Remote VSWR & Power Meter

Michael Clemens, DK1MI mc@qrz.is Matthias Bopp, DD1US DD1US@amsat.org

Gliederung

Einleitung

Richtkoppler

Detektoren

Diodendetektoren

Logarithmische Detektoren

Realisierung

Konzept

Hardware

Software / Bibliotheken

Installation der Arduino Entwicklungsumgebung und der Software

Programmierung des Boards

Konfiguration

Netzwerkeinstellungen

Definition der Frequenzbereiche

Zugriff auf die Webschnittstelle

Konfigurationsmöglichkeiten im Browser

Pflege der Kalibrierungsdaten

Allgemeine Konfigurationselemente

Beispiele

Aufbau #1 Richtkoppler der Firma ERICSSON und Detektoren AD8318

Aufbau #2 Richtkoppler der Firma NARDA und Detektoren AD8313

Aufbau #3 Richtkoppler aus einem alten VSWR-Meter mit integrierten Detektordioden

Zusammenfassung

Einleitung

Des Öfteren gibt es Teile einer Funkanlage, bei der Komponenten abgesetzt betrieben werden. Meistens ist es nur eine Endstufe, manchmal aber auch ein Transverter oder ein kompletter SDR-basierter Transceiver.

Hierbei ist es wünschenswert, in der Nähe der Antenne sowohl die Sendeleistung als auch die von der Antenne reflektierte Leistung zu messen, um anschließend die aktuelle Anpassung der Antenne zu ermitteln. Damit steigt auch die Genauigkeit der Messung, denn die mit steigender Frequenz zunehmenden Verluste im Koaxialkabel zwischen dem Messgerät und der Antenne täuschen eine bessere Anpassung vor, als sie es tatsächlich ist.

Im hier beschriebenen Konzept werden diese Messungen mittels eines Richtkopplers, zwei Leistungsdetektoren und eines Mikroprozessors des Typs WT32/ESP32 durchgeführt. Auf dem Mikroprozessor mit der integrierten Ethernet-Schnittstelle läuft ein Webserver, so dass die Ergebnisse auf einem beliebigen Browser im Netzwerk visualisiert werden können.

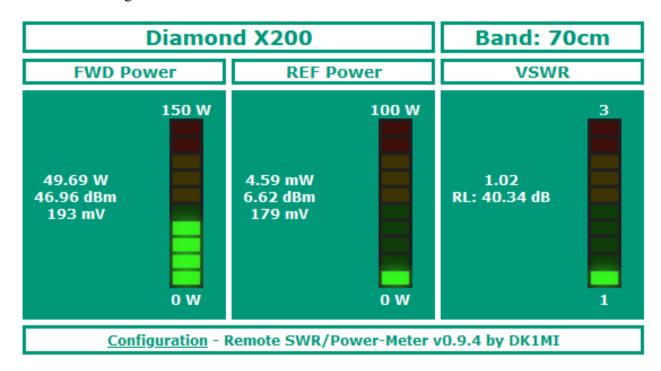


Bild 1: Betriebsanzeige (Dashboard) des Webservers

Ziel war es nicht, mit kommerziellen Messgeräten zu konkurrieren, sondern eine kostengünstige Lösung für ein "Betriebsmessgerät" mit ausreichender Genauigkeit zu realisieren.

Richtkoppler

Für die avisierten Messungen wird ein Richtkoppler benötigt, welcher einen kleinen Teil der vorlaufenden und der reflektierten Leistung an 2 Anschlüssen (FWD und REF) zur Verfügung stellt.

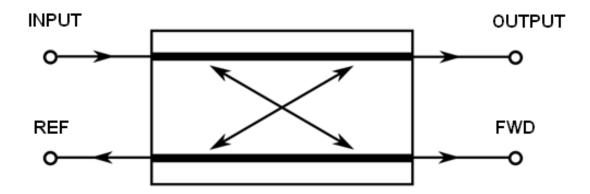


Bild 2: Prinzip eines Richtkopplers

Ein Richtkoppler hat in forward FWD und reflected REF Richtung jeweils eine frequenzabhängige Koppeldämpfung. Diese beiden Koppeldämpfungen sind nicht unbedingt gleich und liegen meist im Bereich zwischen 10 dB und 40 dB.

Die Richtschärfe (directivity) beschreibt, welche minimale Rückflußdämpfung (beispielsweise von einer Antenne) mit dem Richtkoppler noch gemessen werden kann. Idealerweise würde bei einer an OUTPUT angeschlossenen optimal angepassten Last an REF keine reflektierte Leistung gemessen werden. Die Richtschärfe wäre dann unendlich groß. Typischerweise liegt sie zwischen 20 und 40 dB. Bei einer Richtschärfe von 25,4 dB beträgt das minimal messbare VSWR 1,11, bei 30,9 dB nur 1,06. Auch die Richtschärfe ist frequenzabhängig.

Die Einfügedämpfung (insertion loss) beschreibt das Verhältnis der Leistung am Ausgang OUTPUT zum Eingang INPUT bzw. wie viel von der in den Richtkoppler eingespeisten Leistung verloren geht. Die Verluste setzen sich aus den folgenden Teilen zusammen:

- den Verlusten durch Reflexion eines Teils der eingespeisten Leistung am Eingang des Richtkopplers durch dessen nicht optimale Anpassung an den Sender (inkl. der Speiseleitung)
- der Dämpfung innerhalb des Richtkopplers (z.B. durch dielektrische Verluste)
- den Verlusten durch das Auskoppeln eines Teils der Leistung über die Messausgänge FWD und REF (je grösser die Auskoppeldämpfung ist, desto kleiner ist der Einfluss auf die Einfügedämpfung)

Auch die Einfügedämpfung ist frequenzabhängig. Ein Insertion Loss von 0,05 dB bedeutet, dass 1,2 % der eingespeisten Leistung verloren gehen. Bei einer Eingangsleistung von 100 W wären dies also 1,2 W.

Die Güte des Messsystems wird ganz wesentlich durch den eingesetzten Richtkoppler bestimmt, insbesondere durch dessen Richtschärfe.

Detektoren

Die ausgekoppelte Leistung kann mittels diskret aufgebauter Diodendetektoren oder einem integrierten logarithmischen Detektor erfasst werden. Beide Detektorarten konvertieren die aus dem Richtkoppler ausgekoppelte Leistung in eine Gleichspannung, welche dann mittels eines AD-Wandlers digitalisiert wird. Der Mikroprozessor rechnet die erfassten Gleichspannungen in HF-Leistungen um und ermittelt daraus auch die Anpassung (return loss) sowie das SWR der am OUTPUT angeschlossenen Last.

Diodendetektoren

Die Kennlinie eines Diodendetektors ist im unteren Bereich stark nichtlinear und wird dann bei höheren Pegeln linearer. Hier ein Beispiel:

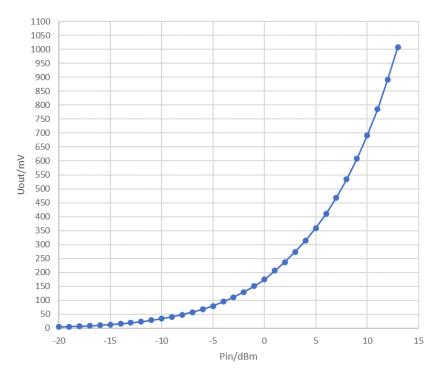


Bild 3: Kennlinie eines Diodendetektors

Die Kennlinie ist außerdem temperatur- und frequenzabhängig. Im Bild oben erkennt man schnell die Problematik der Diodendetektoren: Bei kleinen zu messenden Leistungen ist die Ausgangsspannung sehr klein und die Kennlinie flach. Damit ändert sich die DC-Ausgangsspannung als Funktion der HF-Eingangsleistung sehr wenig und der Messfehler wird groß.

Der Vollständigkeit halber sollte noch darauf hingewiesen werden, dass es Diodendetektoren sowohl mit einer negativen als auch mit einer positiven Ausgangsspannung (siehe Beispiel oben) gibt. Da in der Regel die AD-Wandler einfacher Mikrokontroller nur positive Spannungen messen können, verwendet man im Falle eines Detektors mit einer negativen Ausgangsspannung zumeist eine analoge Inverterschaltung mit einem Operationsverstärker, um eine ggf. zusätzlich verstärkte positive Spannung für den AD-Wandler zu erzeugen.

Man kann versuchen, die Kennlinie des Diodendetektors mittels einer Formel zu approximieren oder in einer Tabelle (lookup table) zu hinterlegen, in der pro Frequenzbereich die Kennlinie durch Stützpunkte nachgebildet wird.

Logarithmische Detektoren

Als Alternative zu Diodendetektoren bieten sich integrierte logarithmische Detektoren an. Diese setzen die HF-Eingangsleistung (INPUT LEVEL in dBm) in ein dB-lineares DC-Ausgangssignal (V_{OUT} in V) um. Im nachfolgenden Beispiel ist die Frequenzabhängigkeit der Kennlinie gut zu erkennen. Die Ausgangskennlinie ist über einen weiten Eingangsleistungsbereich (>60 dB) sehr linear.

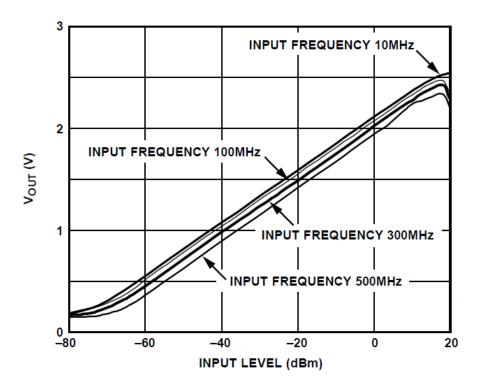


Bild 4: Kennlinie eines logarithmischen Detektors

Recht verbreitet sind logarithmische Detektoren der Firma Analog Devices. Meistens sind diese in ein 8 Pin SMD-Gehäuse eingebaut und leicht zu applizieren. Der Versorgungsspannungsbereich beträgt in der Regel 2,7 bis 5,5 V.

Es gibt aus China recht günstige fertige Platinen mit solchen ICs zu kaufen. Folgend ein Beispiel:

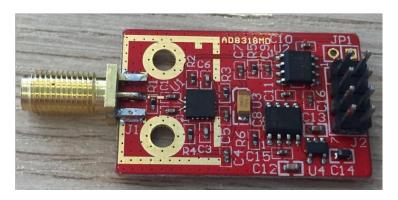


Bild 5: Beispiel einer Detektorplatine mit AD8318

Realisierung

Konzept

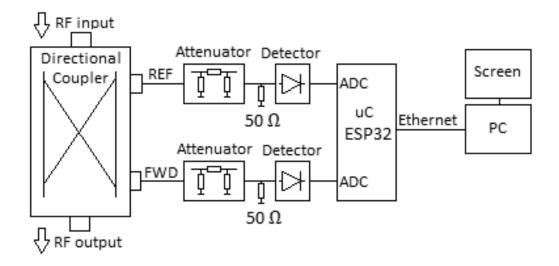


Bild 6: Blockschaltbild des Aufbaus

Die aus dem Richtkoppler ausgekoppelten HF-Signale werden über Dämpfungsglieder auf Detektoren gegeben. Diese setzen die HF-Signale für Vorlauf FWD und Rücklauf REF in DC-Spannungen um, welche anschließend mittels AD-Wandler (ADCs) digitalisiert werden. Die Umrechnung dieser DC-Spannungen (mV) in entsprechenden HF-Leistungen (dBm) erfolgt mittels Kalibrierungstabellen (lookup tables), die im Microcontroller abgelegt sind. Schließlich können die Vorlaufleistung und die Rücklaufleistung noch von dBm in W umgerechnet werden:

$$P(W) = 1W \cdot \frac{10^{\frac{P(dBm)}{10}}}{1000} = 10^{\frac{P(dBm)-30}{10}}$$

Die Reflexionsdämpfung (return loss) in dB ist der Differenz der beiden Werte (Vorlauf und Rücklauf jeweils in dBm). Außerdem können wir aus der Reflexionsdämpfung in dB das VSWR berechnen.

Die berechneten Werte werden mittels eines Webservers zur Verfügung gestellt, um sie auf beliebigen Endgeräten mithilfe eines Browsers darzustellen.

Hardware

Die folgende Hardware wird für dieses Projekt benötigt:

- wt32-eth01 Entwicklungsboard mit integrierter Ethernet-Schnittstelle
- USB-seriell-Adapter (FTDI)
- Richtkoppler und Detektoren, die eine DC-Spannung (0 bis 3,3 V) proportional zur Vor- und Rücklaufleistung ausgeben
- Kalibriertes Power Meter für den initialen Abgleich des Aufbaus

Software / Bibliotheken

- Arduino IDE
- Projekt-Code: https://codeberg.org/mclemens/wt32powermeter
- WebServer_WT32_ETH01 Bibliothek: https://github.com/khoihprog/WebServer_WT32_ETH01

Installation der Arduino Entwicklungsumgebung und der Software

Die folgenden Schritte sind erforderlich, um den Code kompilieren und hochladen zu können:

- Downloaden und installieren Sie die Arduino IDE 2.1: https://wiki-content.arduino.cc/en/software
- Folgen Sie dieser Anleitung, um die ESP32-Boarddefinitionen zu installieren: https://randomnerdtutorials.com/installing-esp32-arduino-ide-2-0/
- Wählen Sie das richtige Board in der Arduino IDE aus:
 Werkzeuge → Board → esp32 → ESP32 Dev Modul
- $\bullet~$ Installieren Sie alle benötigten Bibliotheken: Werkzeuge \to Bibliotheken verwalten \to
 - → Suche nach "WebServer_WT32_ETH01" → Installieren

Nun laden Sie die benötigte Software herunter und installieren diese:

- Laden Sie den Code aus dem Code wt32powermeter-Respository herunter: https://codeberg.org/mclemens/wt32powermeter/archive/main.zip
- Entpacken Sie den Code nach *C:\Benutzer\Dokumente\Arduino*:

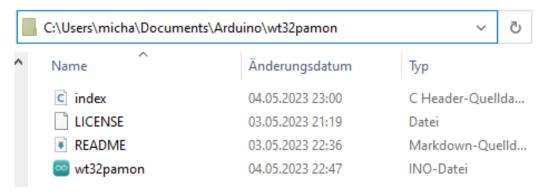


Bild 7: Entpacken der Software

• Öffnen Sie die Datei wt32powermeter.ino innerhalb der Arduino IDE oder doppelklicken Sie auf die Datei.

Programmierung des Boards

Anschließend erfolgt die Programmierung des Boards.

• Verbinden Sie zunächst das Board mit einem USB-Seriell-Adapter gemäß folgender Abbildung und schließen sie den Adapter per USB am PC an:

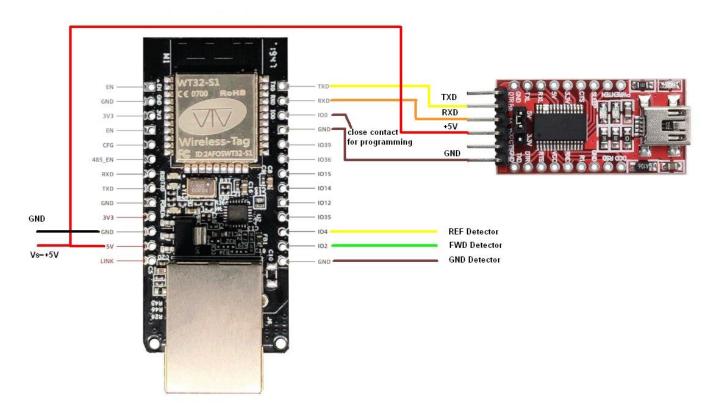


Bild 8: Anschluss des Programmieradapters an das Board

- Wählen Sie den richtigen COM-Port in der Arduino IDE:
 Werkzeuge → Port → Port auswählen
- Wählen Sie als Board "ESP32 Dev Module":

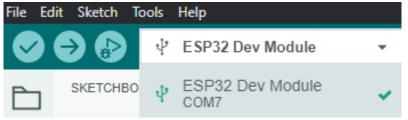


Bild 9: Auswahl des ESP32 Development Moduls

• Klicken Sie auf "Upload" (obere linke Ecke, Pfeil zeigt nach rechts)

Während des Betriebs braucht der USB-Seriell-Adapter nicht angeschlossen zu werden. Es reicht, Versorgungsspannung und Masse anzulegen sowie die drei Pins IO2, IO4 und Masse mit den beiden Detektoren FWD und REF zu verbinden.

Bitte beachten Sie, dass die beiden Pins IO0 und GND nur während der Programmierung gebrückt werden müssen. Öffnen Sie die Brücke nach der Programmierung wieder.

Konfiguration

Bitte passen Sie die folgenden Codeblöcke in der Datei wt32powermeter.ino an Ihre Bedürfnisse an:

Netzwerkeinstellungen

```
ETH.begin(ETH_PHY_ADDR, ETH_PHY_POWER);
// Static IP, leave without this line to get IP via DHCP
//ETH.config(myIP, myGW, mySN, myDNS);
WT32_ETH01_waitForConnect();
```

Standardmäßig ist wt32powermeter so konfiguriert, dass der Mikrokontroller eine dynamische IP-Adresse über DHCP zugewiesen bekommt. Falls dies gewünscht sein sollte, sind keine Maßnahmen erforderlich. Falls nicht, entfernen Sie die beiden Schrägstriche am Anfang der Zeile ETH.config(myIP, myGW, mySN, myDNS), um eine statische IP-Konfiguration zu erhalten. Bitte stellen Sie die gewünschte Netzwerkkonfiguration in dem folgenden Teil des Quellcodes ein:

```
// Select the IP address according to your local network
IPAddress myIP(192.168.1.100);
IPAddress myGW(192.168.1.1);
IPAddress mySN(255.255.255.0);
IPAddress myDNS(192.168.1.1);
```

<u>Definition der Frequenzbereiche</u>

Wie zuvor erläutert, zeigt der Messaufbau ein frequenzabhängiges Verhalten. Deshalb können in der Software die zu verwendenden Frequenzbereiche definiert werden. Um ein Band hinzuzufügen oder zu entfernen, sind Anpassungen im folgenden Teil des Quellcodes möglich:

```
String band = "";
String default_band = "70cm";
String band_fwd = band + "_fwd";
String band_ref = band + "_ref";
String band_list[] = { "1.25cm", "3cm", "6cm", "9cm", "13cm", "23cm", "70cm", "2m", "HF" };
```

Fügen Sie der Variable band_list[] nach Bedarf Frequenzbänder hinzu oder entfernen Sie diese und legen Sie mit default band das gewünschte Standardband fest.

Zugriff auf die Webschnittstelle

Öffnen Sie Ihren bevorzugten Browser und navigieren Sie zu http://<IP_ADRESSE>, z. B. http://192.168.1.100.

Die IP-Adresse ist entweder die Adresse, die Sie oben definiert haben, oder eine dynamisch zugewiesene Adresse. Um Letztere herauszufinden, können Sie sich bei Ihrem Router anmelden und nach einem Dashboard suchen, welches alle aktuell verbundenen Netzwerkgeräte anzeigt. Alternativ dazu können Sie den in der Arduino IDE integrierten seriellen Monitor bei noch eingestecktem USB-Seriell-Adapter aktivieren. Bei jedem Neustart des Mikrokontrollers gibt dieser über die serielle Schnittstelle unter anderem seine aktuelle Netzwerkkonfiguration aus.

Moderne Browser versuchen häufig, eine gesicherte Verbindung via HTTPS zu erzwingen. Dies ist in diesem Fall nicht gewünscht. Achten Sie darauf, dass *http://* und nicht *https://* in der Adresszeile steht.

Konfigurationsmöglichkeiten im Browser

Der erste Schritt besteht darin, den verwendeten Richtkoppler inkl. Detektor zu konfigurieren, indem Sie in der Betriebsanzeige des Webservers (siehe Bild 1 Dashboard) links unten auf "Configuration" klicken. Es öffnet sich dann der folgende Bildschirm:

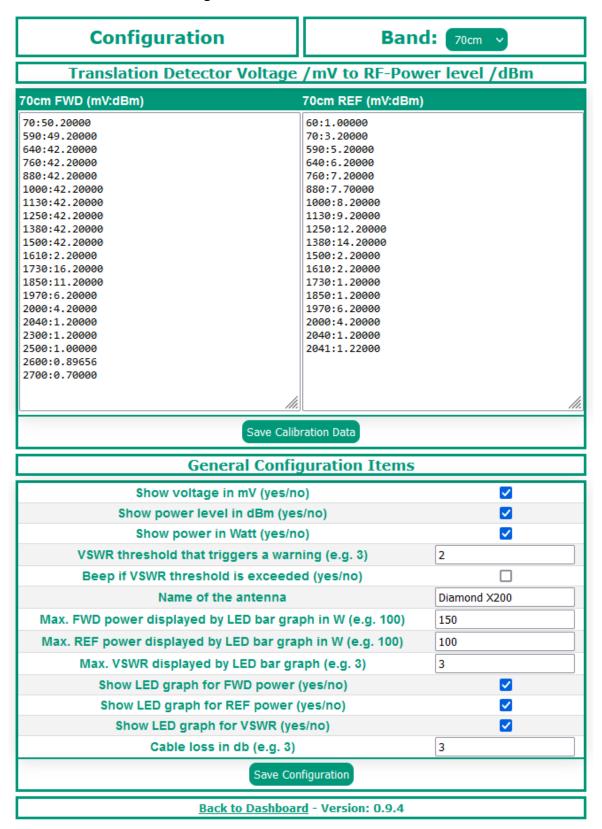


Bild 10: Bildschirmanzeige der Konfiguration

Pflege der Kalibrierungsdaten

Wählen Sie zunächst in der rechten oberen Dropdown-Box "Band" das Frequenzband aus, für welches Sie die Kalibrierungsdaten einpflegen möchten.

Die voreingestellten Werte der Kalibrierungsdaten sind nur exemplarisch und müssen durch Ihre eigenen Werte für Ihr individuelles Setup ersetzt werden. Geben Sie hierzu die mV:dBm - Wertepaare für FWD und REF ein und klicken Sie auf "Save Calibration Data".

Sie können Ihre Daten in einer beliebigen Zeile eingeben, eine manuelle Sortierung der Wertepaare ist nicht erforderlich. Nach dem Speichern der Daten werden diese automatisch sortiert und korrekt angezeigt.

Allgemeine Konfigurationselemente

Es stehen die folgenden allgemeinen Konfigurationsoptionen pro Frequenzband zur Verfügung:

Parameter	Funktion	
Show voltage in mV	Aktiviert oder deaktiviert die Anzeige	
(yes/no)	der gemessenen Spannung	
Show power level in dBm	Aktiviert oder deaktiviert die Anzeige	
(yes/no)	des gemessenen Leistungspegels in dBm	
Show power in Watt	Aktiviert oder deaktiviert die Anzeige	
(yes/no)	der gemessenen Leistung in Watt	
VSWR threshold that triggers a	Jeder berechnete Wert, der den konfigurierten Wert	
warning	überschreitet, führt zu einer optischen und optional	
(e.g. 3)	akustischen Warnung	
Beep if VSWR threshold is exceeded	Ein Signalton ertönt, wenn der oben eingestellte	
(yes/no)	Schwellenwert überschritten wird	
	(Funktioniert nicht mit allen Browsern)	
Name of the antenna	Frei definierbarer Name der Antenne für dieses Band	
Max. FWD power displayed by LED	Legt den oberen Grenzwert des LED-Balkens	
bar graph in W (e.g. 100)	für die berechnete FWD-Leistung fest	
Max. REF power displayed by LED	Legt den oberen Grenzwert des LED-Balkens	
bar graph in W (e.g. 100)	für die berechnete REF-Leistung fest	
Max. VSWR displayed by LED bar	Legt die Obergrenze des LED-Balkendiagramms	
graph (e.g. 3)	für das VSWR fest	
Show LED graph for FWD power	Aktiviert oder deaktiviert die einem VU-Meter	
(yes/no)	nachempfundene LED-Grafik für die FWD-Leistung	
Show LED graph for REF power	Aktiviert oder deaktiviert die einem VU-Meter	
(yes/no)	nachempfundene LED-Grafik für die REF-Leistung	
Show LED graph for VSWR	Aktiviert oder deaktiviert die einem VU-Meter	
(yes/no)	nachempfundene LED-Grafik für das VSWR	
Cable loss in dB (e.g. 3)	Legt die Kabeldämpfung zwischen Messobjekt und	
	Remote VSWR & Power Meter fest, welche bei den	
	Berechnungen berücksichtigt wird	

Nachdem Sie die gewünschten Änderungen vorgenommen haben, klicken Sie auf "Save Configuration".

Beispiele

Aufbau #1 Richtkoppler der Firma ERICSSON und Detektoren AD8318

Aufbau #1 basiert auf einem Richtkoppler der Firma ERICSSON, 2 Boards mit logarithmischen Detektoren des Typs AD8318 sowie einem uC Modul WT32-S1 mit integriertem Ethernet-Interface.

Bild 11: Aufbau #1 mit Richtkoppler von ERICSSON und Detektoren mit AD8318

Der Richtkoppler hat frequenzabhängige Koppeldämpfungen D_{FWD} und D_{REF}. Neben diesen Werten sind in der nachfolgenden Tabelle auch die Richtschärfe DIR und die Einfügedämpfung IL aufgeführt.

Frequenz	$\mathbf{D}_{\mathrm{FWD}}$	DREF	DIR	IL
/MHz	/dB	/dB	/dB	/dB
145	60,5	60,2	25,4	<0,05
435	51,2	51,0	26,8	<0,05
1296	42,3	42,5	38,1	<0,05
2400	38,6	38,7	30,9	<0,05

Die logarithmischen Detektoren AD8318 besitzen einen linearen Aussteuerbereich von -57 dBm bis +3 dBm. Der Dynamikbereich beträgt also 60 dB. Der Frequenzbereich umfasst 1 MHz bis 8 GHz. Die DC-Ausgangsspannung V_{OUT} wird bei zunehmendem HF-Eingangspegel geringer. Die Steilheit beträgt -25 mV/dB. Die Kennlinie ist bei verschiedenen Frequenzen unterschiedlich und zudem auch noch temperaturabhängig.

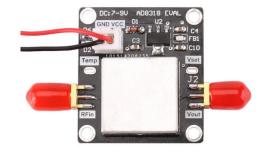


Bild 12: Detektorboard mit abgeschirmtem AD8318

Die Temperaturabhängigkeit beträgt aber nur 0,5 dB, so dass man diese in erster Näherung vernachlässigen kann. Der IC liefert auch eine temperaturabhängige Referenzspannung, mit der man

bei Bedarf eine temperaturabhängige Kompensation per Software realisieren könnte. Dies wird hier aber nicht verwendet. Die Software kann übrigens mit logarithmischen Detektoren mit positiver oder negativer Steigung der Kennlinie arbeiten. Hier ist eine typische Kennlinie des AD8318 dargestellt.

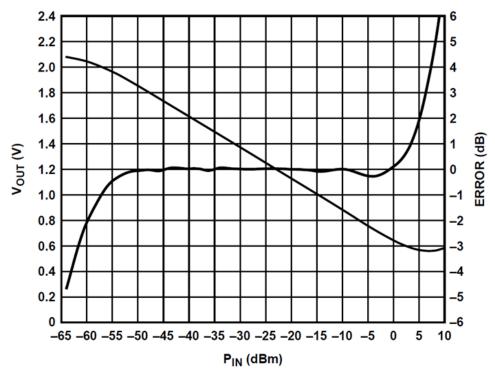


Bild 13: AD8318 typische Kennlinie bei 5,8 GHz

Bei einer Sendeleistung von 14 W = 41,5 dBm und einer Koppeldämpfung im 13 cm Band von 38,6 dB wäre der Eingangspegel am Detektor 3,1 dBm, also an der oberen Grenze des Aussteuerbereiches des AD8318.

Um auch höhere Leistungen messen zu können, wurde deshalb zwischen den Messausgängen des Richtkopplers und den Eingängen der AD8318 jeweils ein 10 dB Dämpfungsglied eingefügt. Damit erhöht sich der maximale Eingangspegel im 13 cm Band auf 140 W.

Nutzt man den vollen Dynamikbereich der AD8318 aus, dann sind die theoretischen maximalen und minimalen Eingangspegel, die mit dem ERICSSON Richtkoppler inklusive der 10 dB Dämpfungsglieder gemessen werden können, wie folgt:

Maximale Eingangspegel:

Frequenz	max. FWD-Power	max. FWD-Power	max. REF-Power	max. REF-Power
/MHz	/dBm	/W	/dBm	/W
145	73,5	22400	73,2	20900
435	64,2	2600	64,0	2500
1296	55,2	330	55,5	350
2400	51,6	145	51,7	148

Für welche maximale Leistung der Richtkoppler geeignet ist, muss noch untersucht werden. Ein Datenblatt zu diesem Modell steht leider nicht zur Verfügung. Aufgrund der geringen Einfügedämpfung und den hohen Koppeldämpfungen wird vermutet, dass der Aufbau im 2 m Band

für bis zu 500 W, im 13 cm Band bis zu 150 W geeignet ist. Im 2 m Band konnten bereits 100 W problemlos gemessen werden, wie später gezeigt wird.

Minimale Eingangspegel:

Frequenz	min. FWD-Power	min. FWD-Power	min. REF-Power	min. REF-Power
/MHz	/dBm	/mW	/dBm	/mW
145	13,5	22,4	13,2	20,9
435	4,2	2,6	4,0	2,5
1296	-4,8	0,33	-4,5	0,35
2400	-8,4	0,145	-8,3	0,148

Berücksichtigt man die frequenzabhängige Richtschärfe (directivity) des Richtkopplers und möchte man die volle Messgenauigkeit des Richtkopplers ausnutzen, so ergeben sich die folgenden minimalen Sendepegel:

Frequenz	min. FWD-Power	min. FWD-Power
/MHz	/dBm	/W
145	38,6	7,1
435	30,8	1,2
1296	33,6	2,3
2400	22,6	0,18

Dies bedeutet: Ist der Sendepegel im 13 cm Band kleiner als 0,18 W, so wird die Vorlaufleistung zwar richtig gemessen (bis 0,145 mW), die reflektierte Leistung würde bei einer sehr gut angepassten Antenne (mit einer Rückflußdämpfung von besser 30,9 dB) aber nicht mehr erfasst werden. Damit stimmt die VSWR-Messung nicht mehr, das VSWR wird schlechter dargestellt als es tatsächlich ist.

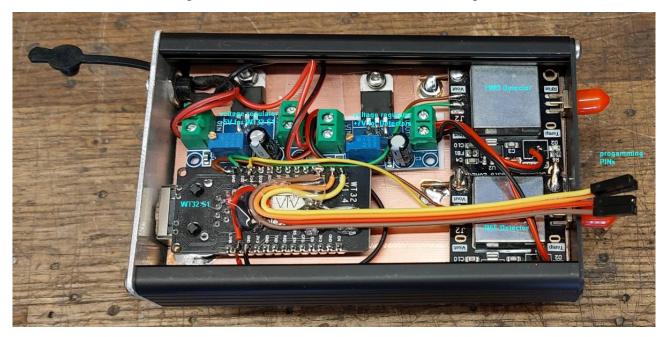


Bild 14: Innenansicht des Aufbaus mit ESP32-Board, 2 Detektorboards und 2 Spannungsreglern

Bild 15: Anschlüsse des Remote VSWR & Power Meters

Bild 16: Anschlüsse des Remote VSWR & Power Meters

Folgend noch ein Beispiel für die Kennlinie des Aufbaus gemessen bei 145 MHz. Die maximale Leistung von 50 dBm (100 W) war durch die Ausgangsleistung des verwendeten Senders begrenzt.

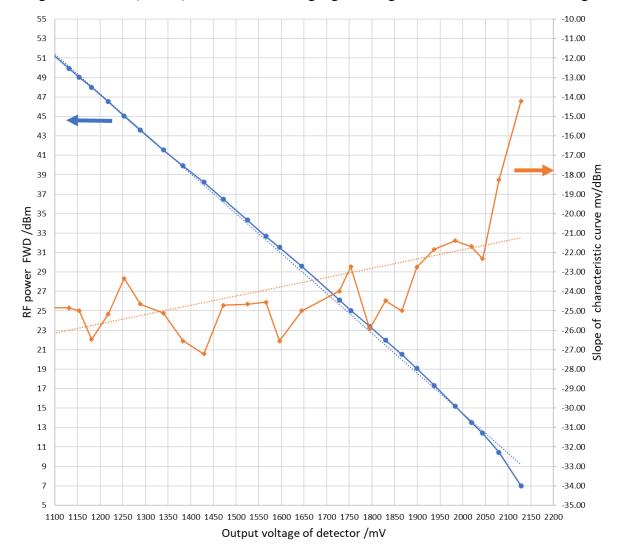


Bild 17: Ausgangskennlinie des Detektors als Funktion der HF-Leistung am Eingang des Richtkopplers

Aufbau #2 Richtkoppler der Firma NARDA und Detektoren AD8313

In dem 2. Aufbau wird ein Richtkoppler der Firma NARDA mit der Typenbezeichnung 31119 verwendet. Dem Aufdruck zufolge wurde dieser Richtkoppler offensichtlich von der Firma Motorola in Basisstationen eingesetzt.

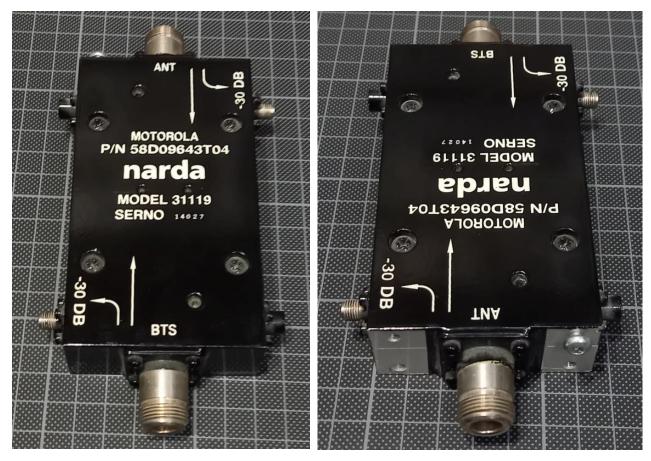


Bild 18: Richtkoppler NARDA 31119

Bild 19: Richtkoppler NARDA 31119

Diesmal werden logarithmische Detektoren des Typs AD8313 eingesetzt. Entsprechende fertig aufgebaute Boards sind ebenfalls günstig bei Onlinehändlern zu finden.

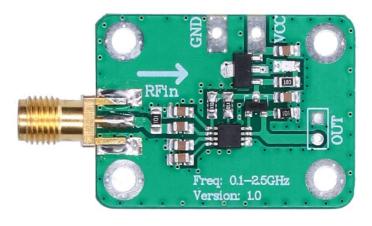


Bild 20: Detektorboard mit AD8313

Der AD8313 besitzt einen linearen Aussteuerbereich von -75 dBm bis -5 dBm. Der Dynamikbereich beträgt also 70 dB. Der Frequenzbereich umfasst 100 MHz bis 2,5 GHz.

Beim AD8313 steigt die DC-Ausgangsspannung mit zunehmendem HF-Eingangspegel. Der DC-Ausgangsspannungsbereich von 0,5 V bis 1,75 V ist etwas kleiner als beim AD8313.

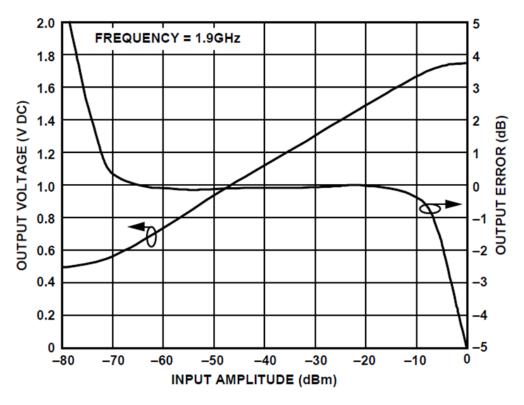


Bild 21: AD8313 typische Kennlinie bei 1,9 GHz

Bei diesem kostengünstigeren Detektor weisen die Kennlinien übrigens eine etwas höhere Abhängigkeit von Frequenz und Temperatur auf. Diese sind aber für unsere Zwecke ausreichend.

Bild 22: Innenansicht des Aufbaus mit AD8313 Boards

Folgend ein Beispiel für die Kalibrierungsdaten des Remote VSWR & Power Meters im 70 cm Band:

Configuration

Band Selection

Translation Detector voltage /mV to RF-Power level /dBm

FWD	REF

millivolt (mV)	decibel-milliwatts (dBm) Watt Action	millivolt (mV)
594	-7.000	0.00020 delete	596
602	-4.600	0.00035 delete	600
620	-1.600	0.00069 delete	620
650	0.000	0.00100 delete	629
663	1.800	0.00151 delete	664
672	3.000	0.00200 delete	685
709	5.200	0.00331 delete	717
740	7.000	0.00501 delete	729
784	9.000	0.00794 delete	771
801	10.000	0.01000 delete	820
857	13.000	0.01995 delete	847
891	14.800	0.03020 delete	894
915	16.000	0.03981 delete	918
957	18.300	0.06761 delete	942
1117	23.000	0.19953 delete	1104
1145	24.800	0.30200 delete	1134
1185	27.800	0.60256 delete	1173
1210	29.000	0.79433 delete	1197
1262	32.600	1.81970 delete	1231
1297	34.800	3.01995 delete	1268
1328	36.500	4.46684 delete	1303
1373	38.500	7.07946 delete	1332
1401	40.000	10.00000 delete	1368
1433	41.900	15.48817 delete	1404
1458	43.000	19.95262 delete	1433
			1466
1490	44.800	30.19951 delete	1480
1502	45.400	34.67370 delete	1502
1533	47.000	50.11872 delete	1509
1550	48.100	64.56540 delete	1530
		add/edit	

millivolt (mV)	decibel-milliwatts (di	Bm) Watt Action
596	-7.000	0.00020 delete
600	-4.600	0.00035 delete
620	-1.600	0.00069 delete
629	-0.200	0.00095 delete
664	3.000	0.00200 delete
685	4.300	0.00269 delete
717	6.200	0.00417 delete
729	7.000	0.00501 delete
771	9.000	0.00794 delete
820	11.800	0.01514 delete
847	13.000	0.01995 delete
894	15.400	0.03467 delete
918	17.000	0.05012 delete
942	18.300	0.06761 delete
1104	23.000	0.19953 delete
1134	24.800	0.30200 delete
1173	27.300	0.53703 delete
1197	29.300	0.85114 delete
1231	31.600	1.44544 delete
1268	34.000	2.51189 delete
1303	36.000	3.98107 delete
1332	38.500	7.07946 delete
1368	40.000	10.00000 delete
1404	41.800	15.13561 delete
1433	43.100	20.41737 delete
1466	44.800	30.19951 delete
1480	45.400	34.67370 delete
1502	46.500	44.66836 delete
1509	47.000	50.11872 delete
1530	48.100	64.56540 delete
		add/edit

Bild 23: Beispiel für Tabelle der Kalibrierungsdaten im 70 cm Band

Aufbau #3 Richtkoppler aus einem alten VSWR-Meter mit integrierten Detektordioden

Basis dieses Aufbaus ist ein altes VSWR/Powermeter für Kurzwelle, aus welchem der Richtkoppler mit integrierten Detektordioden ausgebaut und verwendet wurde.

Bild 24: Altes VSWR/Powermeter für Kurzwelle

Bild 25: In dem VSWR-Meter findet sich ein Richtkoppler mit integrierten Detektordioden

Nach dem Ausbau des Richtkopplers wurde die offene Seite mit Kupferfolie abgedeckt, um eine saubere Schirmung sicher zu stellen.

Bild 26: Ausgebauter Richtkoppler mit zusätzlicher Schirmung

Der Richtkoppler passt perfekt in Michaels Lieblings-5-Euro-Projektbox (Donau Elektronik - KGB15 Euro Box klein, Blau, 95x135x45).

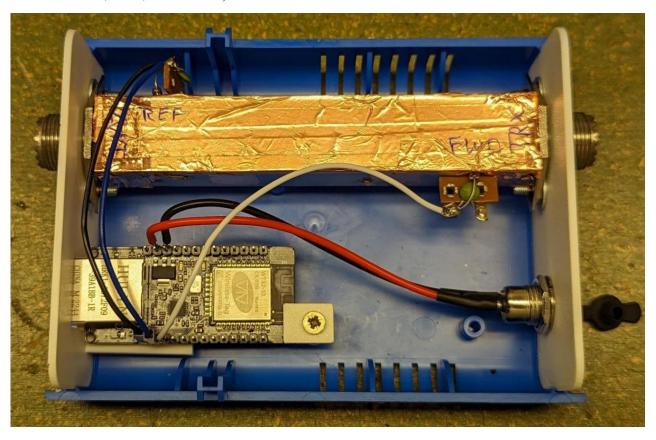


Bild 27: Richtkoppler und Microcontroller-Board im Gehäuse

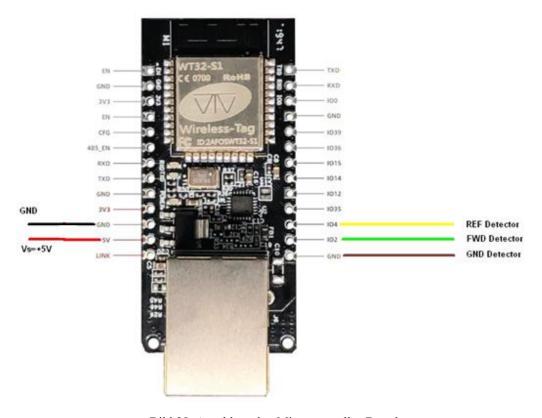


Bild 28: Anschlussplan Microcontroller-Board

Bild 29: Frontplatte sowie Rückseite wurden mittels 3D-Druck hergestellt

Am Beispiel dieses Aufbaus soll nochmals die Kalibrierung erläutert werden:

- 1. Schließen Sie die Komponenten wie folgt an: Transceiver-> Remote VSWR & Power Meter -> bekannter Leistungsmesser -> Dummy Load
- 2. Transceiver auf das gewünschte Band einstellen, Betriebsart FM
- 3. Leistung auf 1 W einstellen, PTT drücken, die gemessene Leistung des bekannten Leistungsmessers und die des Remote VSWR & Power Meters gemessene Spannung ablesen und in eine Kalibrierungstabelle eintragen. Diese Tabelle bezieht sich auf FWD.
- 4. Wiederholen Sie Schritt 3 bei schrittweiser Erhöhung der Sendeleistung, bis die maximale Leistung erreicht ist
- 5. Das Remote VSWR & Power Meter aus dem Aufbau herausnehmen und umgekehrt wieder in die Gerätekette einfügen
- 6. Wiederholen Sie die Schritte 3 und 4, um so eine weitere Tabelle REF zu generieren
- 7. Berechnen Sie die dBm-Werte für jede gemessene Leistung in den Tabellen:

$$P_{\text{(dBm)}} = 10 \cdot \log_{10}(1000 \cdot P_{\text{(W)}} / 1\text{W})$$

- 8. Nun sollten Sie zwei Tabellen mit Wertepaaren im Format mV:dBm vorliegen haben
- 9. Fügen Sie beide Tabellen in die Konfigurationsseite des Remote VSWR & Power Meters ein. Wenn Sie die Tabellen elektronisch z.B. in Excel verfügbar haben, geht das besonders einfach per copy & paste.

Zusammenfassung

Es wurde eine Lösung für eine abgesetztes VSWR- und Leistungsmessgerät vorgestellt. Aufgrund der universellen Ethernet-Schnittstelle und des integrierten Webservers kann die Messeinheit von beliebigen Endgeräten mithilfe eines Browsers konfiguriert und ausgelesen werden.

Das Konzept unterstützt beliebige Richtkoppler und Detektoren und bietet daher eine ideale Experimentierplattform von der Kurzwelle bis in den GHz Bereich.

Diese und weitere Infos sind hier zu finden:

https://dk1mi.radio/remote-power-meter/

https://www.dd1us.de

Die jeweils aktuelle Version der Software ist im Sourcecode hier zu finden: https://codeberg.org/mclemens/wt32powermeter/